Navigation
API > API/Runtime > API/Runtime/Core > API/Runtime/Core/TQuat2
Description
Transform 2 rotations defined by complex numbers: In imaginary land: (A + Bi) * (C + Di) == (AC - BD) + (AD + BC)i
Looking at this as a matrix, A == cos(theta), B == sin(theta), C == cos(sigma), D == sin(sigma):
[ A B] * [ C D] == [ AC-BD AD+BC] [-B A] [-D C] [-(AD+BC) AC-BD]
If you look at how the vector multiply works out: [X(AC-BD)+Y(-BC-AD) X(AD+BC)+Y(-BD+AC)] you can see it follows the same form of the imaginary form. Indeed, check out how the matrix nicely works out to [ A B] for a visual proof of the results. [-B A]
| Name | Concatenate |
| Type | function |
| Header File | /Engine/Source/Runtime/Core/Public/Math/TransformCalculus2D.h |
| Include Path | #include "Math/TransformCalculus2D.h" |
TQuat2 Concatenate
(
const TQuat2 & RHS
) const